Papers
Topics
Authors
Recent
2000 character limit reached

Dynamically Context-Sensitive Time-Decay Attention for Dialogue Modeling (1809.01557v2)

Published 5 Sep 2018 in cs.CL

Abstract: Spoken language understanding (SLU) is an essential component in conversational systems. Considering that contexts provide informative cues for better understanding, history can be leveraged for contextual SLU. However, most prior work only paid attention to the related content in history utterances and ignored the temporal information. In dialogues, it is intuitive that the most recent utterances are more important than the least recent ones, and time-aware attention should be in a decaying manner. Therefore, this paper allows the model to automatically learn a time-decay attention function where the attentional weights can be dynamically decided based on the content of each role's contexts, which effectively integrates both content-aware and time-aware perspectives and demonstrates remarkable flexibility to complex dialogue contexts. The experiments on the benchmark Dialogue State Tracking Challenge (DSTC4) dataset show that the proposed dynamically context-sensitive time-decay attention mechanisms significantly improve the state-of-the-art model for contextual understanding performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.