Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CNNs-based Acoustic Scene Classification using Multi-Spectrogram Fusion and Label Expansions (1809.01543v1)

Published 5 Sep 2018 in cs.CV

Abstract: Spectrograms have been widely used in Convolutional Neural Networks based schemes for acoustic scene classification, such as the STFT spectrogram and the MFCC spectrogram, etc. They have different time-frequency characteristics, contributing to their own advantages and disadvantages in recognizing acoustic scenes. In this letter, a novel multi-spectrogram fusion framework is proposed, making the spectrograms complement each other. In the framework, a single CNN architecture is applied onto multiple spectrograms for feature extraction. The deep features extracted from multiple spectrograms are then fused to discriminate the acoustic scenes. Moreover, motivated by the inter-class similarities in acoustic scene datasets, a label expansion method is further proposed in which super-class labels are constructed upon the original classes. On the help of the expanded labels, the CNN models are transformed into the multitask learning form to improve the acoustic scene classification by appending the auxiliary task of super-class classification. To verify the effectiveness of the proposed methods, intensive experiments have been performed on the DCASE2017 and the LITIS Rouen datasets. Experimental results show that the proposed method can achieve promising accuracies on both datasets. Specifically, accuracies of 0.9744, 0.8865 and 0.7778 are obtained for the LITIS Rouen dataset, the DCASE Development set and Evaluation set respectively.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.