Papers
Topics
Authors
Recent
2000 character limit reached

Sentylic at IEST 2018: Gated Recurrent Neural Network and Capsule Network Based Approach for Implicit Emotion Detection (1809.01452v1)

Published 5 Sep 2018 in cs.CL and cs.LG

Abstract: In this paper, we present the system we have used for the Implicit WASSA 2018 Implicit Emotion Shared Task. The task is to predict the emotion of a tweet of which the explicit mentions of emotion terms have been removed. The idea is to come up with a model which has the ability to implicitly identify the emotion expressed given the context words. We have used a Gated Recurrent Neural Network (GRU) and a Capsule Network based model for the task. Pre-trained word embeddings have been utilized to incorporate contextual knowledge about words into the model. GRU layer learns latent representations using the input word embeddings. Subsequent Capsule Network layer learns high-level features from that hidden representation. The proposed model managed to achieve a macro-F1 score of 0.692.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.