Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Faster Balanced Clusterings in High Dimension (1809.00932v2)

Published 4 Sep 2018 in cs.CG, cs.DS, and cs.LG

Abstract: The problem of constrained clustering has attracted significant attention in the past decades. In this paper, we study the balanced $k$-center, $k$-median, and $k$-means clustering problems where the size of each cluster is constrained by the given lower and upper bounds. The problems are motivated by the applications in processing large-scale data in high dimension. Existing methods often need to compute complicated matchings (or min cost flows) to satisfy the balance constraint, and thus suffer from high complexities especially in high dimension. We develop an effective framework for the three balanced clustering problems to address this issue, and our method is based on a novel spatial partition idea in geometry. For the balanced $k$-center clustering, we provide a $4$-approximation algorithm that improves the existing approximation factors; for the balanced $k$-median and $k$-means clusterings, our algorithms yield constant and $(1+\epsilon)$-approximation factors with any $\epsilon>0$. More importantly, our algorithms achieve linear or nearly linear running times when $k$ is a constant, and significantly improve the existing ones. Our results can be easily extended to metric balanced clusterings and the running times are sub-linear in terms of the complexity of $n$-point metric.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.