Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learning Saliency Prediction From Sparse Fixation Pixel Map (1809.00644v1)

Published 3 Sep 2018 in cs.CV

Abstract: Ground truth for saliency prediction datasets consists of two types of map data: fixation pixel map which records the human eye movements on sample images, and fixation blob map generated by performing gaussian blurring on the corresponding fixation pixel map. Current saliency approaches perform prediction by directly pixel-wise regressing the input image into saliency map with fixation blob as ground truth, yet learning saliency from fixation pixel map is not explored. In this work, we propose a first-of-its-kind approach of learning saliency prediction from sparse fixation pixel map, and a novel loss function for training from such sparse fixation. We utilize clustering to extract sparse fixation pixel from the raw fixation pixel map, and add a max-pooling transformation on the output to avoid false penalty between sparse outputs and labels caused by nearby but non-overlapping saliency pixels when calculating loss. This approach provides a novel perspective for achieving saliency prediction. We evaluate our approach over multiple benchmark datasets, and achieve competitive performance in terms of multiple metrics comparing with state-of-the-art saliency methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.