Papers
Topics
Authors
Recent
2000 character limit reached

Crowdsourcing Semantic Label Propagation in Relation Classification (1809.00537v1)

Published 3 Sep 2018 in cs.CL

Abstract: Distant supervision is a popular method for performing relation extraction from text that is known to produce noisy labels. Most progress in relation extraction and classification has been made with crowdsourced corrections to distant-supervised labels, and there is evidence that indicates still more would be better. In this paper, we explore the problem of propagating human annotation signals gathered for open-domain relation classification through the CrowdTruth methodology for crowdsourcing, that captures ambiguity in annotations by measuring inter-annotator disagreement. Our approach propagates annotations to sentences that are similar in a low dimensional embedding space, expanding the number of labels by two orders of magnitude. Our experiments show significant improvement in a sentence-level multi-class relation classifier.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.