Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Tensor Networks for Latent Variable Analysis: Higher Order Canonical Polyadic Decomposition (1809.00535v1)

Published 3 Sep 2018 in cs.NA

Abstract: The Canonical Polyadic decomposition (CPD) is a convenient and intuitive tool for tensor factorization; however, for higher-order tensors, it often exhibits high computational cost and permutation of tensor entries, these undesirable effects grow exponentially with the tensor order. Prior compression of tensor in-hand can reduce the computational cost of CPD, but this is only applicable when the rank $R$ of the decomposition does not exceed the tensor dimensions. To resolve these issues, we present a novel method for CPD of higher-order tensors, which rests upon a simple tensor network of representative inter-connected core tensors of orders not higher than 3. For rigour, we develop an exact conversion scheme from the core tensors to the factor matrices in CPD, and an iterative algorithm with low complexity to estimate these factor matrices for the inexact case. Comprehensive simulations over a variety of scenarios support the approach.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.