Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Spherical Latent Spaces for Stable Variational Autoencoders (1808.10805v2)

Published 31 Aug 2018 in cs.CL

Abstract: A hallmark of variational autoencoders (VAEs) for text processing is their combination of powerful encoder-decoder models, such as LSTMs, with simple latent distributions, typically multivariate Gaussians. These models pose a difficult optimization problem: there is an especially bad local optimum where the variational posterior always equals the prior and the model does not use the latent variable at all, a kind of "collapse" which is encouraged by the KL divergence term of the objective. In this work, we experiment with another choice of latent distribution, namely the von Mises-Fisher (vMF) distribution, which places mass on the surface of the unit hypersphere. With this choice of prior and posterior, the KL divergence term now only depends on the variance of the vMF distribution, giving us the ability to treat it as a fixed hyperparameter. We show that doing so not only averts the KL collapse, but consistently gives better likelihoods than Gaussians across a range of modeling conditions, including recurrent language modeling and bag-of-words document modeling. An analysis of the properties of our vMF representations shows that they learn richer and more nuanced structures in their latent representations than their Gaussian counterparts.

Citations (185)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.