Papers
Topics
Authors
Recent
2000 character limit reached

Scalable Manifold Learning for Big Data with Apache Spark (1808.10776v1)

Published 31 Aug 2018 in cs.DC and cs.LG

Abstract: Non-linear spectral dimensionality reduction methods, such as Isomap, remain important technique for learning manifolds. However, due to computational complexity, exact manifold learning using Isomap is currently impossible from large-scale data. In this paper, we propose a distributed memory framework implementing end-to-end exact Isomap under Apache Spark model. We show how each critical step of the Isomap algorithm can be efficiently realized using basic Spark model, without the need to provision data in the secondary storage. We show how the entire method can be implemented using PySpark, offloading compute intensive linear algebra routines to BLAS. Through experimental results, we demonstrate excellent scalability of our method, and we show that it can process datasets orders of magnitude larger than what is currently possible, using a 25-node parallel~cluster.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.