Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Self-Attention Network for Hierarchical Data Structures with an Application to Claims Management (1808.10543v1)

Published 30 Aug 2018 in cs.LG, econ.EM, and stat.ML

Abstract: Insurance companies must manage millions of claims per year. While most of these claims are non-fraudulent, fraud detection is core for insurance companies. The ultimate goal is a predictive model to single out the fraudulent claims and pay out the non-fraudulent ones immediately. Modern machine learning methods are well suited for this kind of problem. Health care claims often have a data structure that is hierarchical and of variable length. We propose one model based on piecewise feed forward neural networks (deep learning) and another model based on self-attention neural networks for the task of claim management. We show that the proposed methods outperform bag-of-words based models, hand designed features, and models based on convolutional neural networks, on a data set of two million health care claims. The proposed self-attention method performs the best.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.