Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The number of crossings in multigraphs with no empty lens (1808.10480v2)

Published 30 Aug 2018 in math.CO and cs.CG

Abstract: Let $G$ be a multigraph with $n$ vertices and $e>4n$ edges, drawn in the plane such that any two parallel edges form a simple closed curve with at least one vertex in its interior and at least one vertex in its exterior. Pach and T\'oth (A Crossing Lemma for Multigraphs, SoCG 2018) extended the Crossing Lemma of Ajtai et al. (Crossing-free subgraphs, North-Holland Mathematics Studies, 1982) and Leighton (Complexity issues in VLSI, Foundations of computing series, 1983) by showing that if no two adjacent edges cross and every pair of nonadjacent edges cross at most once, then the number of edge crossings in $G$ is at least $\alpha e3/n2$, for a suitable constant $\alpha>0$. The situation turns out to be quite different if nonparallel edges are allowed to cross any number of times. It is proved that in this case the number of crossings in $G$ is at least $\alpha e{2.5}/n{1.5}$. The order of magnitude of this bound cannot be improved.

Citations (10)

Summary

We haven't generated a summary for this paper yet.