Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Asymptotically Optimal Codes Correcting Fixed-Length Duplication Errors in DNA Storage Systems (1808.10328v1)

Published 30 Aug 2018 in cs.IT, cs.DM, and math.IT

Abstract: A (tandem) duplication of length $ k $ is an insertion of an exact copy of a substring of length $ k $ next to its original position. This and related types of impairments are of relevance in modeling communication in the presence of synchronization errors, as well as in several information storage applications. We demonstrate that Levenshtein's construction of binary codes correcting insertions of zeros is, with minor modifications, applicable also to channels with arbitrary alphabets and with duplication errors of arbitrary (but fixed) length $ k $. Furthermore, we derive bounds on the cardinality of optimal $ q $-ary codes correcting up to $ t $ duplications of length $ k $, and establish the following corollaries in the asymptotic regime of growing block-length: 1.) the presented family of codes is optimal for every $ q, t, k $, in the sense of the asymptotic scaling of code redundancy; 2.) the upper bound, when specialized to $ q = 2 $, $ k = 1 $, improves upon Levenshtein's bound for every $ t \geq 3 $; 3.) the bounds coincide for $ t = 1 $, thus yielding the exact asymptotic behavior of the size of optimal single-duplication-correcting codes.

Citations (51)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.