Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to adapt: a meta-learning approach for speaker adaptation (1808.10239v1)

Published 30 Aug 2018 in cs.CL

Abstract: The performance of automatic speech recognition systems can be improved by adapting an acoustic model to compensate for the mismatch between training and testing conditions, for example by adapting to unseen speakers. The success of speaker adaptation methods relies on selecting weights that are suitable for adaptation and using good adaptation schedules to update these weights in order not to overfit to the adaptation data. In this paper we investigate a principled way of adapting all the weights of the acoustic model using a meta-learning. We show that the meta-learner can learn to perform supervised and unsupervised speaker adaptation and that it outperforms a strong baseline adapting LHUC parameters when adapting a DNN AM with 1.5M parameters. We also report initial experiments on adapting TDNN AMs, where the meta-learner achieves comparable performance with LHUC.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.