Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sensitivity, Affine Transforms and Quantum Communication Complexity (1808.10191v2)

Published 30 Aug 2018 in cs.CC

Abstract: $\newcommand{\F}{\mathbb{F}}$We study the Boolean function parameters sensitivity ($s$), block sensitivity ($bs$), and alternation ($alt$) under specially designed affine transforms. For a function $f:\F_2n\to {0,1}$, and $A=Mx+b$ for $M \in \F_2{n\times n}$ and $b\in \F_2n$, the result of the transformation $g$ is defined as $\forall x\in\F_2n, g(x)=f(Mx+b)$. We study alternation under linear shifts ($M$ is the identity matrix) called the shift invariant alternation (denoted by $salt(f)$). We exhibit an explicit family of functions for which $salt(f)$ is $2{\Omega(s(f))}$. We show an affine transform $A$, such that the corresponding function $g$ satisfies $bs(f,0n) \le s(g)$, using which we proving that for $F(x,y)=f(x\land y)$, the bounded error quantum communication complexity of $F$ with prior entanglement, $Q*_{1/3}(F)=\Omega(\sqrt{bs(f,0n)})$. Our proof builds on ideas from Sherstov (2010) where we use specific properties of the above affine transformation. We show, * For a prime $p$ and $0<\epsilon<1$, any $f$ with $deg_p(f)\le(1-\epsilon)\log n$ must satisfy $Q*_{1/3}(F) = \Omega(\frac{n{\epsilon/2}}{\log n})$. Here, $deg_p(f)$ denotes the degree of the multilinear polynomial of $f$ over $\F_p$. * For any $f$ such that there exists primes $p$ and $q$ with $deg_q(f) \ge \Omega(deg_p(f)\delta)$ for $\delta > 2$, the deterministic communication complexity - $D(F)$ and $Q*_{1/3}(F)$ are polynomially related. In particular, this holds when $deg_p(f) = O(1)$. Thus, for this class of functions, this answers an open question (see Buhrman and deWolf (2001)) about the relation between the two measures. We construct linear transformation $A$, such that $g$ satisfies, $alt(f) \le 2s(g)+1$. Using this, we exhibit a family of Boolean functions that rule out a potential approach to settle the XOR Log-Rank conjecture via a proof of Sensitivity conjecture [Hao Huang (2019)].

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.