Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Recognizing Generating Subgraphs in Graphs without Cycles of Lengths 6 and 7 (1808.10137v1)

Published 30 Aug 2018 in cs.CC, cs.DM, and math.CO

Abstract: Let $B$ be an induced complete bipartite subgraph of $G$ on vertex sets of bipartition $B_{X}$ and $B_{Y}$. The subgraph $B$ is {\it generating} if there exists an independent set $S$ such that each of $S \cup B_{X}$ and $S \cup B_{Y}$ is a maximal independent set in the graph. If $B$ is generating, it \textit{produces} the restriction $w(B_{X})=w(B_{Y})$. Let $w:V(G) \longrightarrow\mathbb{R}$ be a weight function. We say that $G$ is $w$-well-covered if all maximal independent sets are of the same weight. The graph $G$ is $w$-well-covered if and only if $w$ satisfies all restrictions produced by all generating subgraphs of $G$. Therefore, generating subgraphs play an important role in characterizing weighted well-covered graphs. It is an \textbf{NP}-complete problem to decide whether a subgraph is generating, even when the subgraph is isomorphic to $K_{1,1}$ \cite{bnz:related}. We present a polynomial algorithm for recognizing generating subgraphs for graphs without cycles of lengths 6 and 7.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)