Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CNN-PS: CNN-based Photometric Stereo for General Non-Convex Surfaces (1808.10093v1)

Published 30 Aug 2018 in cs.CV

Abstract: Most conventional photometric stereo algorithms inversely solve a BRDF-based image formation model. However, the actual imaging process is often far more complex due to the global light transport on the non-convex surfaces. This paper presents a photometric stereo network that directly learns relationships between the photometric stereo input and surface normals of a scene. For handling unordered, arbitrary number of input images, we merge all the input data to the intermediate representation called {\it observation map} that has a fixed shape, is able to be fed into a CNN. To improve both training and prediction, we take into account the rotational pseudo-invariance of the observation map that is derived from the isotropic constraint. For training the network, we create a synthetic photometric stereo dataset that is generated by a physics-based renderer, therefore the global light transport is considered. Our experimental results on both synthetic and real datasets show that our method outperforms conventional BRDF-based photometric stereo algorithms especially when scenes are highly non-convex.

Citations (130)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)