Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Discriminative Learning of Similarity and Group Equivariant Representations (1808.10078v2)

Published 30 Aug 2018 in stat.ML and cs.LG

Abstract: One of the most fundamental problems in machine learning is to compare examples: Given a pair of objects we want to return a value which indicates degree of (dis)similarity. Similarity is often task specific, and pre-defined distances can perform poorly, leading to work in metric learning. However, being able to learn a similarity-sensitive distance function also presupposes access to a rich, discriminative representation for the objects at hand. In this dissertation we present contributions towards both ends. In the first part of the thesis, assuming good representations for the data, we present a formulation for metric learning that makes a more direct attempt to optimize for the k-NN accuracy as compared to prior work. We also present extensions of this formulation to metric learning for kNN regression, asymmetric similarity learning and discriminative learning of Hamming distance. In the second part, we consider a situation where we are on a limited computational budget i.e. optimizing over a space of possible metrics would be infeasible, but access to a label aware distance metric is still desirable. We present a simple, and computationally inexpensive approach for estimating a well motivated metric that relies only on gradient estimates, discussing theoretical and experimental results. In the final part, we address representational issues, considering group equivariant convolutional neural networks (GCNNs). Equivariance to symmetry transformations is explicitly encoded in GCNNs; a classical CNN being the simplest example. In particular, we present a SO(3)-equivariant neural network architecture for spherical data, that operates entirely in Fourier space, while also providing a formalism for the design of fully Fourier neural networks that are equivariant to the action of any continuous compact group.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 31 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube