Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Super-Resolution for Hyperspectral and Multispectral Image Fusion Accounting for Seasonal Spectral Variability (1808.10072v2)

Published 30 Aug 2018 in cs.CV

Abstract: Image fusion combines data from different heterogeneous sources to obtain more precise information about an underlying scene. Hyperspectral-multispectral (HS-MS) image fusion is currently attracting great interest in remote sensing since it allows the generation of high spatial resolution HS images, circumventing the main limitation of this imaging modality. Existing HS-MS fusion algorithms, however, neglect the spectral variability often existing between images acquired at different time instants. This time difference causes variations in spectral signatures of the underlying constituent materials due to different acquisition and seasonal conditions. This paper introduces a novel HS-MS image fusion strategy that combines an unmixing-based formulation with an explicit parametric model for typical spectral variability between the two images. Simulations with synthetic and real data show that the proposed strategy leads to a significant performance improvement under spectral variability and state-of-the-art performance otherwise.

Citations (90)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.