Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A polynomial-time algorithm for median-closed semilinear constraints (1808.10068v2)

Published 29 Aug 2018 in cs.CC

Abstract: A subset of Qn is called semilinear (or piecewise linear) if it is Boolean combination of linear half-spaces. We study the computational complexity of the constraint satisfaction problem (CSP) over the rationals when all the constraints are semilinear. When the sets are convex the CSP is polynomial-time equivalent to linear programming. A semilinear relation is convex if and only if it is preserved by taking averages. Our main result is a polynomial-time algorithm for the CSP of semilinear constraints that are preserved by applying medians. We also prove that this class is maximally tractable in the sense that any larger class of semilinear relations has an NP-hard CSP. To illustrate, our class contains all relations that can be expressed by linear inequalities with at most two variables (so-called TVPI constraints), but it also contains many non-convex relations, for example constraints of the form x in S for arbitrary finite subset S of Q, or more generally disjunctive constraints of the form x < c or y < d for constants c and d.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Manuel Bodirsky (79 papers)
  2. Marcello Mamino (22 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.