Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A polynomial-time algorithm for median-closed semilinear constraints (1808.10068v2)

Published 29 Aug 2018 in cs.CC

Abstract: A subset of Qn is called semilinear (or piecewise linear) if it is Boolean combination of linear half-spaces. We study the computational complexity of the constraint satisfaction problem (CSP) over the rationals when all the constraints are semilinear. When the sets are convex the CSP is polynomial-time equivalent to linear programming. A semilinear relation is convex if and only if it is preserved by taking averages. Our main result is a polynomial-time algorithm for the CSP of semilinear constraints that are preserved by applying medians. We also prove that this class is maximally tractable in the sense that any larger class of semilinear relations has an NP-hard CSP. To illustrate, our class contains all relations that can be expressed by linear inequalities with at most two variables (so-called TVPI constraints), but it also contains many non-convex relations, for example constraints of the form x in S for arbitrary finite subset S of Q, or more generally disjunctive constraints of the form x < c or y < d for constants c and d.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.