Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Deep Reinforcement Learning in Portfolio Management (1808.09940v3)

Published 29 Aug 2018 in q-fin.PM, cs.LG, and stat.ML

Abstract: In this paper, we implement three state-of-art continuous reinforcement learning algorithms, Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO) and Policy Gradient (PG)in portfolio management. All of them are widely-used in game playing and robot control. What's more, PPO has appealing theoretical propeties which is hopefully potential in portfolio management. We present the performances of them under different settings, including different learning rates, objective functions, feature combinations, in order to provide insights for parameters tuning, features selection and data preparation. We also conduct intensive experiments in China Stock market and show that PG is more desirable in financial market than DDPG and PPO, although both of them are more advanced. What's more, we propose a so called Adversarial Training method and show that it can greatly improve the training efficiency and significantly promote average daily return and sharpe ratio in back test. Based on this new modification, our experiments results show that our agent based on Policy Gradient can outperform UCRP.

Citations (27)

Summary

We haven't generated a summary for this paper yet.