Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Semi-Supervised Learning for Deep Semantic Role Labeling (1808.09543v1)

Published 28 Aug 2018 in cs.CL

Abstract: Neural models have shown several state-of-the-art performances on Semantic Role Labeling (SRL). However, the neural models require an immense amount of semantic-role corpora and are thus not well suited for low-resource languages or domains. The paper proposes a semi-supervised semantic role labeling method that outperforms the state-of-the-art in limited SRL training corpora. The method is based on explicitly enforcing syntactic constraints by augmenting the training objective with a syntactic-inconsistency loss component and uses SRL-unlabeled instances to train a joint-objective LSTM. On CoNLL-2012 English section, the proposed semi-supervised training with 1%, 10% SRL-labeled data and varying amounts of SRL-unlabeled data achieves +1.58, +0.78 F1, respectively, over the pre-trained models that were trained on SOTA architecture with ELMo on the same SRL-labeled data. Additionally, by using the syntactic-inconsistency loss on inference time, the proposed model achieves +3.67, +2.1 F1 over pre-trained model on 1%, 10% SRL-labeled data, respectively.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.