Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Natural Language Generation with Neural Variational Models (1808.09012v1)

Published 27 Aug 2018 in cs.CL

Abstract: In this thesis, we explore the use of deep neural networks for generation of natural language. Specifically, we implement two sequence-to-sequence neural variational models - variational autoencoders (VAE) and variational encoder-decoders (VED). VAEs for text generation are difficult to train due to issues associated with the Kullback-Leibler (KL) divergence term of the loss function vanishing to zero. We successfully train VAEs by implementing optimization heuristics such as KL weight annealing and word dropout. We also demonstrate the effectiveness of this continuous latent space through experiments such as random sampling, linear interpolation and sampling from the neighborhood of the input. We argue that if VAEs are not designed appropriately, it may lead to bypassing connections which results in the latent space being ignored during training. We show experimentally with the example of decoder hidden state initialization that such bypassing connections degrade the VAE into a deterministic model, thereby reducing the diversity of generated sentences. We discover that the traditional attention mechanism used in sequence-to-sequence VED models serves as a bypassing connection, thereby deteriorating the model's latent space. In order to circumvent this issue, we propose the variational attention mechanism where the attention context vector is modeled as a random variable that can be sampled from a distribution. We show empirically using automatic evaluation metrics, namely entropy and distinct measures, that our variational attention model generates more diverse output sentences than the deterministic attention model. A qualitative analysis with human evaluation study proves that our model simultaneously produces sentences that are of high quality and equally fluent as the ones generated by the deterministic attention counterpart.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube