Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks (1808.08914v3)

Published 27 Aug 2018 in cs.LG and stat.ML

Abstract: The demand for fast and accurate structural analysis is becoming increasingly more prevalent with the advance of generative design and topology optimization technologies. As one step toward accelerating structural analysis, this work explores a deep learning based approach for predicting the stress fields in 2D linear elastic cantilevered structures subjected to external static loads at its free end using convolutional neural networks (CNN). Two different architectures are implemented that take as input the structure geometry, external loads, and displacement boundary conditions, and output the predicted von Mises stress field. The first is a single input channel network called SCSNet as the baseline architecture, and the second is the multi-channel input network called StressNet. Accuracy analysis shows that StressNet results in significantly lower prediction errors than SCSNet on three loss functions, with a mean relative error of 2.04% for testing. These results suggest that deep learning models may offer a promising alternative to classical methods in structural design and topology optimization. Code and dataset are available at https://github.com/zhenguonie/stress_net

Citations (128)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.