Beyond expectation: Deep joint mean and quantile regression for spatio-temporal problems (1808.08798v1)
Abstract: Spatio-temporal problems are ubiquitous and of vital importance in many research fields. Despite the potential already demonstrated by deep learning methods in modeling spatio-temporal data, typical approaches tend to focus solely on conditional expectations of the output variables being modeled. In this paper, we propose a multi-output multi-quantile deep learning approach for jointly modeling several conditional quantiles together with the conditional expectation as a way to provide a more complete "picture" of the predictive density in spatio-temporal problems. Using two large-scale datasets from the transportation domain, we empirically demonstrate that, by approaching the quantile regression problem from a multi-task learning perspective, it is possible to solve the embarrassing quantile crossings problem, while simultaneously significantly outperforming state-of-the-art quantile regression methods. Moreover, we show that jointly modeling the mean and several conditional quantiles not only provides a rich description about the predictive density that can capture heteroscedastic properties at a neglectable computational overhead, but also leads to improved predictions of the conditional expectation due to the extra information and a regularization effect induced by the added quantiles.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.