Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sentence Embeddings in NLI with Iterative Refinement Encoders (1808.08762v2)

Published 27 Aug 2018 in cs.CL and cs.LG

Abstract: Sentence-level representations are necessary for various NLP tasks. Recurrent neural networks have proven to be very effective in learning distributed representations and can be trained efficiently on natural language inference tasks. We build on top of one such model and propose a hierarchy of BiLSTM and max pooling layers that implements an iterative refinement strategy and yields state of the art results on the SciTail dataset as well as strong results for SNLI and MultiNLI. We can show that the sentence embeddings learned in this way can be utilized in a wide variety of transfer learning tasks, outperforming InferSent on 7 out of 10 and SkipThought on 8 out of 9 SentEval sentence embedding evaluation tasks. Furthermore, our model beats the InferSent model in 8 out of 10 recently published SentEval probing tasks designed to evaluate sentence embeddings' ability to capture some of the important linguistic properties of sentences.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Aarne Talman (8 papers)
  2. Anssi Yli-Jyrä (5 papers)
  3. Jörg Tiedemann (41 papers)
Citations (40)

Summary

We haven't generated a summary for this paper yet.