Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deeply Supervised Depth Map Super-Resolution as Novel View Synthesis (1808.08688v1)

Published 27 Aug 2018 in cs.CV

Abstract: Deep convolutional neural network (DCNN) has been successfully applied to depth map super-resolution and outperforms existing methods by a wide margin. However, there still exist two major issues with these DCNN based depth map super-resolution methods that hinder the performance: i) The low-resolution depth maps either need to be up-sampled before feeding into the network or substantial deconvolution has to be used; and ii) The supervision (high-resolution depth maps) is only applied at the end of the network, thus it is difficult to handle large up-sampling factors, such as $\times 8, \times 16$. In this paper, we propose a new framework to tackle the above problems. First, we propose to represent the task of depth map super-resolution as a series of novel view synthesis sub-tasks. The novel view synthesis sub-task aims at generating (synthesizing) a depth map from different camera pose, which could be learned in parallel. Second, to handle large up-sampling factors, we present a deeply supervised network structure to enforce strong supervision in each stage of the network. Third, a multi-scale fusion strategy is proposed to effectively exploit the feature maps at different scales and handle the blocking effect. In this way, our proposed framework could deal with challenging depth map super-resolution efficiently under large up-sampling factors (e.g. $\times 8, \times 16$). Our method only uses the low-resolution depth map as input, and the support of color image is not needed, which greatly reduces the restriction of our method. Extensive experiments on various benchmarking datasets demonstrate the superiority of our method over current state-of-the-art depth map super-resolution methods.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.