Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Voice Conversion with Conditional SampleRNN (1808.08311v1)

Published 24 Aug 2018 in cs.SD, cs.LG, and eess.AS

Abstract: Here we present a novel approach to conditioning the SampleRNN generative model for voice conversion (VC). Conventional methods for VC modify the perceived speaker identity by converting between source and target acoustic features. Our approach focuses on preserving voice content and depends on the generative network to learn voice style. We first train a multi-speaker SampleRNN model conditioned on linguistic features, pitch contour, and speaker identity using a multi-speaker speech corpus. Voice-converted speech is generated using linguistic features and pitch contour extracted from the source speaker, and the target speaker identity. We demonstrate that our system is capable of many-to-many voice conversion without requiring parallel data, enabling broad applications. Subjective evaluation demonstrates that our approach outperforms conventional VC methods.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.