Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Predicting Action Tubes (1808.07712v1)

Published 23 Aug 2018 in cs.CV, cs.AI, and cs.RO

Abstract: In this work, we present a method to predict an entire `action tube' (a set of temporally linked bounding boxes) in a trimmed video just by observing a smaller subset of it. Predicting where an action is going to take place in the near future is essential to many computer vision based applications such as autonomous driving or surgical robotics. Importantly, it has to be done in real-time and in an online fashion. We propose a Tube Prediction network (TPnet) which jointly predicts the past, present and future bounding boxes along with their action classification scores. At test time TPnet is used in a (temporal) sliding window setting, and its predictions are put into a tube estimation framework to construct/predict the video long action tubes not only for the observed part of the video but also for the unobserved part. Additionally, the proposed action tube predictor helps in completing action tubes for unobserved segments of the video. We quantitatively demonstrate the latter ability, and the fact that TPnet improves state-of-the-art detection performance, on one of the standard action detection benchmarks - J-HMDB-21 dataset.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.