Papers
Topics
Authors
Recent
2000 character limit reached

Learning Hierarchical Semantic Image Manipulation through Structured Representations (1808.07535v2)

Published 22 Aug 2018 in cs.CV

Abstract: Understanding, reasoning, and manipulating semantic concepts of images have been a fundamental research problem for decades. Previous work mainly focused on direct manipulation on natural image manifold through color strokes, key-points, textures, and holes-to-fill. In this work, we present a novel hierarchical framework for semantic image manipulation. Key to our hierarchical framework is that we employ a structured semantic layout as our intermediate representation for manipulation. Initialized with coarse-level bounding boxes, our structure generator first creates pixel-wise semantic layout capturing the object shape, object-object interactions, and object-scene relations. Then our image generator fills in the pixel-level textures guided by the semantic layout. Such framework allows a user to manipulate images at object-level by adding, removing, and moving one bounding box at a time. Experimental evaluations demonstrate the advantages of the hierarchical manipulation framework over existing image generation and context hole-filing models, both qualitatively and quantitatively. Benefits of the hierarchical framework are further demonstrated in applications such as semantic object manipulation, interactive image editing, and data-driven image manipulation.

Citations (82)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.