Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Convergence of Cubic Regularization for Nonconvex Optimization under KL Property (1808.07382v1)

Published 22 Aug 2018 in math.OC, cs.LG, and stat.ML

Abstract: Cubic-regularized Newton's method (CR) is a popular algorithm that guarantees to produce a second-order stationary solution for solving nonconvex optimization problems. However, existing understandings of the convergence rate of CR are conditioned on special types of geometrical properties of the objective function. In this paper, we explore the asymptotic convergence rate of CR by exploiting the ubiquitous Kurdyka-Lojasiewicz (KL) property of nonconvex objective functions. In specific, we characterize the asymptotic convergence rate of various types of optimality measures for CR including function value gap, variable distance gap, gradient norm and least eigenvalue of the Hessian matrix. Our results fully characterize the diverse convergence behaviors of these optimality measures in the full parameter regime of the KL property. Moreover, we show that the obtained asymptotic convergence rates of CR are order-wise faster than those of first-order gradient descent algorithms under the KL property.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube