Papers
Topics
Authors
Recent
2000 character limit reached

Deep Association Learning for Unsupervised Video Person Re-identification (1808.07301v1)

Published 22 Aug 2018 in cs.CV

Abstract: Deep learning methods have started to dominate the research progress of video-based person re-identification (re-id). However, existing methods mostly consider supervised learning, which requires exhaustive manual efforts for labelling cross-view pairwise data. Therefore, they severely lack scalability and practicality in real-world video surveillance applications. In this work, to address the video person re-id task, we formulate a novel Deep Association Learning (DAL) scheme, the first end-to-end deep learning method using none of the identity labels in model initialisation and training. DAL learns a deep re-id matching model by jointly optimising two margin-based association losses in an end-to-end manner, which effectively constrains the association of each frame to the best-matched intra-camera representation and cross-camera representation. Existing standard CNNs can be readily employed within our DAL scheme. Experiment results demonstrate that our proposed DAL significantly outperforms current state-of-the-art unsupervised video person re-id methods on three benchmarks: PRID 2011, iLIDS-VID and MARS.

Citations (83)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.