Papers
Topics
Authors
Recent
2000 character limit reached

Automatic skin lesion segmentation on dermoscopic images by the means of superpixel merging (1808.06759v1)

Published 21 Aug 2018 in cs.CV

Abstract: We present a superpixel-based strategy for segmenting skin lesion on dermoscopic images. The segmentation is carried out by over-segmenting the original image using the SLIC algorithm, and then merge the resulting superpixels into two regions: healthy skin and lesion. The mean RGB color of each superpixel was used as merging criterion. The presented method is capable of dealing with segmentation problems commonly found in dermoscopic images such as hair removal, oil bubbles, changes in illumination, and reflections images without any additional steps. The method was evaluated on the PH2 and ISIC 2017 dataset with results comparable to the state-of-art.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.