Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The Deconfounded Recommender: A Causal Inference Approach to Recommendation (1808.06581v2)

Published 20 Aug 2018 in cs.IR, cs.LG, and stat.ML

Abstract: The goal of recommendation is to show users items that they will like. Though usually framed as a prediction, the spirit of recommendation is to answer an interventional question---for each user and movie, what would the rating be if we "forced" the user to watch the movie? To this end, we develop a causal approach to recommendation, one where watching a movie is a "treatment" and a user's rating is an "outcome." The problem is there may be unobserved confounders, variables that affect both which movies the users watch and how they rate them; unobserved confounders impede causal predictions with observational data. To solve this problem, we develop the deconfounded recommender, a way to use classical recommendation models for causal recommendation. Following Wang & Blei [23], the deconfounded recommender involves two probabilistic models. The first models which movies the users watch; it provides a substitute for the unobserved confounders. The second one models how each user rates each movie; it employs the substitute to help account for confounders. This two-stage approach removes bias due to confounding. It improves recommendation and enjoys stable performance against interventions on test sets.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.