Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Benchmarking Automatic Machine Learning Frameworks (1808.06492v1)

Published 17 Aug 2018 in cs.LG, cs.AI, and stat.ML

Abstract: AutoML serves as the bridge between varying levels of expertise when designing machine learning systems and expedites the data science process. A wide range of techniques is taken to address this, however there does not exist an objective comparison of these techniques. We present a benchmark of current open source AutoML solutions using open source datasets. We test auto-sklearn, TPOT, auto_ml, and H2O's AutoML solution against a compiled set of regression and classification datasets sourced from OpenML and find that auto-sklearn performs the best across classification datasets and TPOT performs the best across regression datasets.

Citations (68)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.