Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scalable Edge Partitioning (1808.06411v2)

Published 20 Aug 2018 in cs.DS, cs.DC, and cs.DM

Abstract: Edge-centric distributed computations have appeared as a recent technique to improve the shortcomings of think-like-a-vertex algorithms on large scale-free networks. In order to increase parallelism on this model, edge partitioning - partitioning edges into roughly equally sized blocks - has emerged as an alternative to traditional (node-based) graph partitioning. In this work, we give a distributed memory parallel algorithm to compute high-quality edge partitions in a scalable way. Our algorithm scales to networks with billions of edges, and runs efficiently on thousands of PEs. Our technique is based on a fast parallelization of split graph construction and a use of advanced node partitioning algorithms. Our extensive experiments show that our algorithm has high quality on large real-world networks and large hyperbolic random graphs, which have a power law degree distribution and are therefore specifically targeted by edge partitioning

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.