Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On cyclic codes of length $2^e$ over finite fields (1808.06338v1)

Published 20 Aug 2018 in cs.IT and math.IT

Abstract: Professor Cunsheng Ding gave cyclotomic constructions of cyclic codes with length being the product of two primes. In this paper, we study the cyclic codes of length $n=2e$ and dimension $k=2{e-1}$. Clearly, Ding's construction is not hold in this place. We describe two new types of generalized cyclotomy of order two, which are different from Ding's. Furthermore, we study two classes of cyclic codes of length $n$ and dimension $k$. We get the enumeration of these cyclic codes. What's more, all of the codes from our construction are among the best cyclic codes. Furthermore, we study the hull of cyclic codes of length $n$ over $\mathbb{F}_q$. We obtain the range of $\ell=\dim({\rm Hull}(C))$. We construct and enumerate cyclic codes of length $n$ having hull of given dimension.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.