Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PAC-learning is Undecidable (1808.06324v3)

Published 20 Aug 2018 in cs.LG and stat.ML

Abstract: The problem of attempting to learn the mapping between data and labels is the crux of any machine learning task. It is, therefore, of interest to the machine learning community on practical as well as theoretical counts to consider the existence of a test or criterion for deciding the feasibility of attempting to learn. We investigate the existence of such a criterion in the setting of PAC-learning, basing the feasibility solely on whether the mapping to be learnt lends itself to approximation by a given class of hypothesis functions. We show that no such criterion exists, exposing a fundamental limitation in the decidability of learning. In other words, we prove that testing for PAC-learnability is undecidable in the Turing sense. We also briefly discuss some of the probable implications of this result to the current practice of machine learning.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube