Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-dimensional Graph Convolutional Networks (1808.06099v1)

Published 18 Aug 2018 in cs.SI

Abstract: Convolutional neural networks (CNNs) leverage the great power in representation learning on regular grid data such as image and video. Recently, increasing attention has been paid on generalizing CNNs to graph or network data which is highly irregular. Some focus on graph-level representation learning while others aim to learn node-level representations. These methods have been shown to boost the performance of many graph-level tasks such as graph classification and node-level tasks such as node classification. Most of these methods have been designed for single-dimensional graphs where a pair of nodes can only be connected by one type of relation. However, many real-world graphs have multiple types of relations and they can be naturally modeled as multi-dimensional graphs with each type of relation as a dimension. Multi-dimensional graphs bring about richer interactions between dimensions, which poses tremendous challenges to the graph convolutional neural networks designed for single-dimensional graphs. In this paper, we study the problem of graph convolutional networks for multi-dimensional graphs and propose a multi-dimensional convolutional neural network model mGCN aiming to capture rich information in learning node-level representations for multi-dimensional graphs. Comprehensive experiments on real-world multi-dimensional graphs demonstrate the effectiveness of the proposed framework.

Citations (100)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.