Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CrowdTruth 2.0: Quality Metrics for Crowdsourcing with Disagreement (1808.06080v1)

Published 18 Aug 2018 in cs.HC and cs.SI

Abstract: Typically crowdsourcing-based approaches to gather annotated data use inter-annotator agreement as a measure of quality. However, in many domains, there is ambiguity in the data, as well as a multitude of perspectives of the information examples. In this paper, we present ongoing work into the CrowdTruth metrics, that capture and interpret inter-annotator disagreement in crowdsourcing. The CrowdTruth metrics model the inter-dependency between the three main components of a crowdsourcing system -- worker, input data, and annotation. The goal of the metrics is to capture the degree of ambiguity in each of these three components. The metrics are available online at https://github.com/CrowdTruth/CrowdTruth-core .

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.