Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improved Chord Recognition by Combining Duration and Harmonic Language Models (1808.05335v1)

Published 16 Aug 2018 in cs.SD, cs.LG, and eess.AS

Abstract: Chord recognition systems typically comprise an acoustic model that predicts chords for each audio frame, and a temporal model that casts these predictions into labelled chord segments. However, temporal models have been shown to only smooth predictions, without being able to incorporate musical information about chord progressions. Recent research discovered that it might be the low hierarchical level such models have been applied to (directly on audio frames) which prevents learning musical relationships, even for expressive models such as recurrent neural networks (RNNs). However, if applied on the level of chord sequences, RNNs indeed can become powerful chord predictors. In this paper, we disentangle temporal models into a harmonic LLM---to be applied on chord sequences---and a chord duration model that connects the chord-level predictions of the LLM to the frame-level predictions of the acoustic model. In our experiments, we explore the impact of each model on the chord recognition score, and show that using harmonic language and duration models improves the results.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.