Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Iterative Linearization Galerkin Methods for Nonlinear Problems (1808.04990v2)

Published 15 Aug 2018 in math.NA and cs.NA

Abstract: A wide variety of (fixed-point) iterative methods for the solution of nonlinear equations (in Hilbert spaces) exists. In many cases, such schemes can be interpreted as iterative local linearization methods, which, as will be shown, can be obtained by applying a suitable preconditioning operator to the original (nonlinear) equation. Based on this observation, we will derive a unified abstract framework which recovers some prominent iterative schemes. In particular, for Lipschitz continuous and strongly monotone operators, we derive a general convergence analysis. Furthermore, in the context of numerical solution schemes for nonlinear partial differential equations, we propose a combination of the iterative linearization approach and the classical Galerkin discretization method, thereby giving rise to the so-called iterative linearization Galerkin (ILG) methodology. Moreover, still on an abstract level, based on two different elliptic reconstruction techniques, we derive a posteriori error estimates which separately take into account the discretization and linearization errors. Furthermore, we propose an adaptive algorithm, which provides an efficient interplay between these two effects. In addition, the ILG approach will be applied to the specific context of finite element discretizations of quasilinear elliptic equations, and some numerical experiments will be performed.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube