Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Putting the Horse Before the Cart:A Generator-Evaluator Framework for Question Generation from Text (1808.04961v5)

Published 15 Aug 2018 in cs.CL

Abstract: Automatic question generation (QG) is a useful yet challenging task in NLP. Recent neural network-based approaches represent the state-of-the-art in this task. In this work, we attempt to strengthen them significantly by adopting a holistic and novel generator-evaluator framework that directly optimizes objectives that reward semantics and structure. The {\it generator} is a sequence-to-sequence model that incorporates the {\it structure} and {\it semantics} of the question being generated. The generator predicts an answer in the passage that the question can pivot on. Employing the copy and coverage mechanisms, it also acknowledges other contextually important (and possibly rare) keywords in the passage that the question needs to conform to, while not redundantly repeating words. The {\it evaluator} model evaluates and assigns a reward to each predicted question based on its conformity to the {\it structure} of ground-truth questions. We propose two novel QG-specific reward functions for text conformity and answer conformity of the generated question. The evaluator also employs structure-sensitive rewards based on evaluation measures such as BLEU, GLEU, and ROUGE-L, which are suitable for QG. In contrast, most of the previous works only optimize the cross-entropy loss, which can induce inconsistencies between training (objective) and testing (evaluation) measures. Our evaluation shows that our approach significantly outperforms state-of-the-art systems on the widely-used SQuAD benchmark as per both automatic and human evaluation.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.