Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Neural Material: Learning Elastic Constitutive Material and Damping Models from Sparse Data (1808.04931v1)

Published 15 Aug 2018 in cs.GR

Abstract: The accuracy and fidelity of deformation simulations are highly dependent upon the underlying constitutive material model. Commonly used linear or nonlinear constitutive material models only cover a tiny part of possible material behavior. In this work we propose a unified framework for modeling deformable material. The key idea is to use a neural network to correct a nominal model of the elastic and damping properties of the object. The neural network encapsulates a complex function that is hard to explicitly model. It injects force corrections that help the forward simulation to more accurately predict the true behavior of a given soft object, which includes non-linear elastic forces and damping. Attempting to satisfy the requirement from real material interference and animation design scenarios, we learn material models from examples of dynamic behavior of a deformable object's surface. The challenge is that such data is sparse as it is consistently given only on part of the surface. Sparse reduced space-time optimization is employed to gradually generate increasingly accurate training data, which further refines and enhances the neural network. We evaluate our choice of network architecture and show evidence that the modest amount of training data we use is suitable for the problem tackled. Our method is demonstrated with a set of synthetic examples.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.