Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Wirelessly Powered Data Aggregation for IoT via Over-the-Air Functional Computation: Beamforming and Power Control (1808.04616v1)

Published 14 Aug 2018 in cs.IT and math.IT

Abstract: As a revolution in networking, Internet of Things (IoT) aims at automating the operations of our societies by connecting and leveraging an enormous number of distributed devices (e.g., sensors and actuators). One design challenge is efficient wireless data aggregation (WDA) over tremendous IoT devices. This can enable a series of IoT applications ranging from latency-sensitive high-mobility sensing to data-intensive distributed machine learning. Over-the-air (functional) computation (AirComp) has emerged to be a promising solution that merges computing and communication by exploiting analogwave addition in the air. Another IoT design challenge is battery recharging for dense sensors which can be tackled by wireless power transfer (WPT). The coexisting of AirComp and WPT in IoT system calls for their integration to enhance the performance and efficiency of WDA. This motivates the current work on developing the wirelessly powered AirComp (WP-AirComp) framework by jointly optimizing wireless power control, energy and (data) aggregation beamforming to minimize the AirComp error. To derive a practical solution, we recast the non-convex joint optimization problem into the equivalent outer and inner sub-problems for (inner) wireless power control and energy beamforming, and (outer) the efficient aggregation beamforming, respectively. The former is solved in closed form while the latter is efficiently solved using the semidefinite relaxation technique. The results reveal that the optimal energy beams point to the dominant eigen-directions of the WPT channels, and the optimal power allocation tends to equalize the close-loop (down-link WPT and up-link AirComp) effective channels of different sensors. Simulation demonstrates that controlling WPT provides additional design dimensions for substantially reducing the AirComp error.

Citations (102)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.