Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Road Segmentation Using CNN and Distributed LSTM (1808.04450v2)

Published 10 Aug 2018 in cs.CV and eess.IV

Abstract: In automated driving systems (ADS) and advanced driver-assistance systems (ADAS), an efficient road segmentation is necessary to perceive the drivable region and build an occupancy map for path planning. The existing algorithms implement gigantic convolutional neural networks (CNNs) that are computationally expensive and time consuming. In this paper, we introduced distributed LSTM, a neural network widely used in audio and video processing, to process rows and columns in images and feature maps. We then propose a new network combining the convolutional and distributed LSTM layers to solve the road segmentation problem. In the end, the network is trained and tested in KITTI road benchmark. The result shows that the combined structure enhances the feature extraction and processing but takes less processing time than pure CNN structure.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.