Papers
Topics
Authors
Recent
2000 character limit reached

REGMAPR - Text Matching Made Easy (1808.04343v3)

Published 13 Aug 2018 in cs.CL and cs.AI

Abstract: Text matching is a fundamental problem in natural language processing. Neural models using bidirectional LSTMs for sentence encoding and inter-sentence attention mechanisms perform remarkably well on several benchmark datasets. We propose REGMAPR - a simple and general architecture for text matching that does not use inter-sentence attention. Starting from a Siamese architecture, we augment the embeddings of the words with two features based on exact and para- phrase match between words in the two sentences. We train the model using three types of regularization on datasets for textual entailment, paraphrase detection and semantic related- ness. REGMAPR performs comparably or better than more complex neural models or models using a large number of handcrafted features. REGMAPR achieves state-of-the-art results for paraphrase detection on the SICK dataset and for textual entailment on the SNLI dataset among models that do not use inter-sentence attention.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.