Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Angular-Based Word Meta-Embedding Learning (1808.04334v1)

Published 13 Aug 2018 in cs.CL, cs.LG, and stat.ML

Abstract: Ensembling word embeddings to improve distributed word representations has shown good success for natural language processing tasks in recent years. These approaches either carry out straightforward mathematical operations over a set of vectors or use unsupervised learning to find a lower-dimensional representation. This work compares meta-embeddings trained for different losses, namely loss functions that account for angular distance between the reconstructed embedding and the target and those that account normalized distances based on the vector length. We argue that meta-embeddings are better to treat the ensemble set equally in unsupervised learning as the respective quality of each embedding is unknown for upstream tasks prior to meta-embedding. We show that normalization methods that account for this such as cosine and KL-divergence objectives outperform meta-embedding trained on standard $\ell_1$ and $\ell_2$ loss on \textit{defacto} word similarity and relatedness datasets and find it outperforms existing meta-learning strategies.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.