Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Precise Performance Analysis of the LASSO under Matrix Uncertainties (1808.04309v1)

Published 13 Aug 2018 in cs.IT and math.IT

Abstract: In this paper, we consider the problem of recovering an unknown sparse signal $\xv_0 \in \mathbb{R}n$ from noisy linear measurements $\yv = \Hm \xv_0+ \zv \in \mathbb{R}m$. A popular approach is to solve the $\ell_1$-norm regularized least squares problem which is known as the LASSO. In many practical situations, the measurement matrix $\Hm$ is not perfectely known and we only have a noisy version of it. We assume that the entries of the measurement matrix $\Hm$ and of the noise vector $\zv$ are iid Gaussian with zero mean and variances $1/n$ and $\sigma_{\zv}2$. In this work, an imperfect measurement matrix is considered under which we precisely characterize the limiting behavior of the mean squared error and the probability of support recovery of the LASSO. The analysis is performed when the problem dimensions grow simultaneously to infinity at fixed rates. Numerical simulations validate the theoretical predictions derived in this paper.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.