Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Visual Sensor Network Reconfiguration with Deep Reinforcement Learning (1808.04287v1)

Published 13 Aug 2018 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: We present an approach for reconfiguration of dynamic visual sensor networks with deep reinforcement learning (RL). Our RL agent uses a modified asynchronous advantage actor-critic framework and the recently proposed Relational Network module at the foundation of its network architecture. To address the issue of sample inefficiency in current approaches to model-free reinforcement learning, we train our system in an abstract simulation environment that represents inputs from a dynamic scene. Our system is validated using inputs from a real-world scenario and preexisting object detection and tracking algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.