Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unsupervised Learning of Sentence Representations Using Sequence Consistency (1808.04217v4)

Published 10 Aug 2018 in cs.CL and cs.AI

Abstract: Computing universal distributed representations of sentences is a fundamental task in natural language processing. We propose ConsSent, a simple yet surprisingly powerful unsupervised method to learn such representations by enforcing consistency constraints on sequences of tokens. We consider two classes of such constraints -- sequences that form a sentence and between two sequences that form a sentence when merged. We learn sentence encoders by training them to distinguish between consistent and inconsistent examples, the latter being generated by randomly perturbing consistent examples in six different ways. Extensive evaluation on several transfer learning and linguistic probing tasks shows improved performance over strong unsupervised and supervised baselines, substantially surpassing them in several cases. Our best results are achieved by training sentence encoders in a multitask setting and by an ensemble of encoders trained on the individual tasks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)